Please help me ASAP I will mark branlist just explain
![Please help me ASAP I will mark branlist just explain class=](https://us-static.z-dn.net/files/d4e/32c46fc36f7c8ee546306767f46acc46.png)
Answer:
Measure of Angle 5 = 150 degree.
Step-by-step explanation:
Given line g and h are parallel lines.
Let angle measuring [tex]30\ degree[/tex] be a.
From figure we can see that [tex]\angle a\ and\ \angle 3[/tex] both are Linear Pair Postulate,
i.e. [tex]\angle\ a+\angle 3 =180\ degree[/tex]
So,
[tex]30\ degree +\angle 3 =180\ degree[/tex]
[tex]\angle 3 = 180-30[/tex]
[tex]\Therefore \angle 3=150\ degree[/tex] ------------(equation 1)
Now, [tex]\angle\ a\ and\ \angle\ 4[/tex] are alternate interior angles, and alternate interior angles are equal.
i.e. [tex]\angle\ a = \angle 4[/tex]
Therefore [tex]\angle\ 4 =30\ degree[/tex] ------------(equation 2)
Now, [tex]\angle 4\ and\ \angle 7[/tex] both are Linear Pair Postulate,
i.e. [tex]\angle\ 4 +\angle\ 7 = 180\ degree[/tex]
[tex]30+\angle\ 7=180[/tex] ------------------(from equation 2)
[tex]\angle\ 7 =180-30[/tex]
[tex]\therefore\ \angle\ 7 = 150\ degree[/tex] ---------(equation 3)
Now, [tex]\angle\ 7\ and \angle\ 5[/tex] are vertically opposite angles, and vertically opposite angles are equal.
So,
[tex]\angle 7=\angle 5[/tex]
[tex]\therefore\ \angle 5=150\ \ degree[/tex] -----------------(from equation 3)