Respuesta :

Answer:

Measure of Angle 5 = 150 degree.

Step-by-step explanation:

Given line g and h are parallel lines.

Let angle measuring [tex]30\ degree[/tex] be a.

From figure we can see that [tex]\angle a\ and\ \angle 3[/tex] both are Linear Pair Postulate,

i.e. [tex]\angle\ a+\angle 3 =180\ degree[/tex]

So,

[tex]30\ degree +\angle 3 =180\ degree[/tex]

[tex]\angle 3 = 180-30[/tex]

[tex]\Therefore \angle 3=150\ degree[/tex]   ------------(equation 1)

Now, [tex]\angle\ a\ and\ \angle\ 4[/tex] are alternate interior angles, and alternate interior angles are equal.

i.e. [tex]\angle\ a = \angle 4[/tex]

Therefore  [tex]\angle\ 4 =30\ degree[/tex]  ------------(equation 2)

Now, [tex]\angle 4\ and\ \angle 7[/tex] both are Linear Pair Postulate,

i.e. [tex]\angle\ 4 +\angle\ 7 = 180\ degree[/tex]

[tex]30+\angle\ 7=180[/tex]    ------------------(from equation 2)

[tex]\angle\ 7 =180-30[/tex]

[tex]\therefore\ \angle\ 7 = 150\ degree[/tex] ---------(equation 3)

Now,  [tex]\angle\ 7\ and \angle\ 5[/tex] are vertically opposite angles, and vertically opposite angles are equal.

So,

[tex]\angle 7=\angle 5[/tex]

[tex]\therefore\ \angle 5=150\ \ degree[/tex] -----------------(from equation 3)

ACCESS MORE