Answer:
E) [tex]f(x)=|x-8|+2[/tex]
Step-by-step explanation:
We will check each of the given choices by finding [tex]f(2)[/tex] of the given functions.
In order to find [tex]f(2)[/tex], we plugin [tex]x=2[/tex] in the function.
A) [tex]f(x)=2x+1[/tex]
[tex]f(2)=2(2)+1[/tex]
[tex]f(2)=4+1[/tex]
[tex]f(2)=5[/tex]
B) [tex]f(x)=3x-2[/tex]
[tex]f(2)=3(2)-2[/tex]
[tex]f(2)=6-2[/tex]
[tex]f(2)=4[/tex]
C) [tex]f(x)=x(5x-2)[/tex]
[tex]f(2)=2(5(2)-2)[/tex]
[tex]f(2)=2(10-2)[/tex]
[tex]f(2)=2(8)[/tex]
[tex]f(2)=16[/tex]
D) [tex]f(x)=3x-2x+4[/tex]
[tex]f(2)=3(2)-2(2)+4[/tex]
[tex]f(2)=6-4+4[/tex]
[tex]f(2)=6[/tex]
E) [tex]f(x)=|x-8|+2[/tex]
[tex]f(2)=|2-8|+2[/tex]
[tex]f(2)=|-6|+2[/tex]
[tex]f(2)=6+2[/tex] [Since absolute value of any number is positive]
[tex]f(2)=8[/tex]
So, the function in E has value =8 for [tex]f(2)[/tex]