Answer:
2.1 m/s
Explanation:
Momentum is conserved hence sum of initial momentum equals the sum of final momentum
[tex]M_1\times v_1 + M_2\times v_2= (M_1+ M_2)\times V_c[/tex]
where [tex]M_1[/tex] is the mass of 2150 Kg car, [tex]M_2[/tex] is the mass of 3250 Kg car, [tex]V_1[/tex] is the velocity of the 2150 Kg car, [tex]V_2[/tex] is the velocity of the 3250 Kg car, [tex]V_c[/tex] is the common velocity
Making [tex]V_2[/tex] the subject then
[tex]v_2=\frac {(M_1+ M_2)\times V_c -M_1\times v_1 }{M_2}[/tex]
Substituting 2150 Kg for [tex]M_1[/tex], 3250 Kg for [tex]M_2[/tex], 10 m/s for [tex]v_1[/tex], 5.22 m/s for [tex]v_c[/tex] then we obtain
[tex]v_2=\frac {(2150 kg+3250 kg)\times 5.22 m/s- 2150 kg\times 10 m/s}{3250}=2.057846154 m/s\approx 2.1 m/s[/tex]