Answer:
hence g(x) is increasing at point x= 3+14i,3-14i
Step-by-step explanation:
given, g(x)=x^3-(8+1)x^2-4(9+2)x+5x2-1
g(x)=x^3-9x^2-44x+10x-1
g(x)=x^3-9x^2-34x-1
[tex]\frac{\partial g(x)}{\partial x}[/tex]=3x^2-18x-34
for increasing and decreasing function,
3x^2-18x-34=0
x=3+14i [tex]\geq[/tex]0
x=3-14i [tex]\geq[/tex]0
hence g(x) is increasing at point x= 3+14i,3-14i answer