Respuesta :

Answer:

Step-by-step explanation:

4 3/4 divided by 3/4

= 19/4 ÷ 3/4

= 19/4 ÷ 4/3

= 19/3

= 6 1/3

Answer:  " [tex]\frac{19}{3}[/tex] " ;

or, write as:  " [tex]6\frac{1}{3}[/tex] " ;

 or, write as:  "  6.333 " .

______________________________________

Step-by-step explanation:

Method 1)

[tex]4\frac{3}{4}[/tex]  ÷  [tex]\frac{3}{4}[/tex]   ;

 =  4.75 ÷ 0.75 ;

 =   [tex]\frac{4.75}{0.75}[/tex] ;

Now, multiply Both the "numerator" AND the "denonimator" by "100" ; to get rid of both decimal values ;

        →   [tex]\frac{4.75}{0.75}[/tex]  ;

                =  [tex]\frac{4.75*100}{0.75*100}[/tex]  ;

Note:   Let us start with the "numerator":

_________________________________________    

" 4.75 * 100 = ? " ;

            →  When we "multiply" by "100" ; we move the decimal place

           "Forward" by "2 (two) spaces" ;

            →  {that is;  "Forward" because we "multiply" ; and "2 (two)" spaces because we are multiplying by a positive integer value that begins with a "1" followed by:  "2 (two)" whole-number digits;  specifically;  we are multiplying by the number;  "100" .}.

            →  4.75 * 100 =  475.

_________________________________________

Now, continue with the "denominator":

_________________________________________

            →  0.75 * 100 =  75.

_________________________________________

Now, rewrite the expression:

_________________________________________

             

→   4.75 ÷ 0.75 ;

     =  [tex]\frac{4.75*100}{0.75*100}[/tex]  ;

     =   [tex]\frac{475}{75}[/tex] ;

To simplify, divide Both the "numerator" AND the "denominator" by:  "25" ;

         →   [tex]\frac{475}{75}[/tex] ;

                  =  {475÷25} / {75÷25} ;  

                  =   19/3  ;

 Write the answer as:  

          →  " [tex]\frac{19}{3}[/tex] " ;  

                       

as the most simplified form of an "improper fraction" ;

or:       →   [tex]\frac{19}{3}[/tex]  

                  =  19 / 3 = 19 ÷ 3 = ?  ;

______________________________________

                           6  R 1    

                    3 ⟌19

                      - 18  

                           1

______________________________________

     →  or:  write as:   " [tex]6\frac{1}{3}[/tex] " ;

or using calculator:  19/3 = 19 ÷ 3 = 6.333333.... ; →  round to:  " 6.333 " .

______________________________________

The answer is:  "  [tex]\frac{19}{3}[/tex] " ;

    or, write as:  "  [tex]6\frac{1}{3}[/tex] " ;

    or, write as:  "  6.333 " .

______________________________________

Method 2)   [tex]4\frac{3}{4}[/tex] ÷ [tex]\frac{3}{4}[/tex]  = ? ;

______________________________________

Convert:  " [tex]4\frac{3}{4}[/tex] " to an "improper fraction" ;

→   [tex]4\frac{3}{4}[/tex]   ;  

→  Multiply the "4"  [taken from "4" in the "[tex]\frac{3}{4}[/tex]" ];

                         

         by the "whole number , "4" ; to get "16" ;

then Add "3" [taken from the "3" in the "[tex]\frac{3}{4}[/tex]" ];    

to the "16" ; to get:  

       →  16 + 3 ;

          =    " 19" ;

      → which is the "numerator" of the "improper fraction" form of the "original, mixed number version" ;

      →  The "4" [taken from "4" in the "[tex]\frac{3}{4}[/tex]" ];  is the

"denominator" of the "improper fraction" form of the "original, mixed number version" ;

     →   And rewrite the mixed number:  " [tex]4\frac{3}{4}[/tex] " ;  as:

                          →  "   [tex]\frac{19}{4}[/tex] " .

Now, we can rewrite the original problem:

 

     →  [tex]\frac{19}{4}[/tex]  ÷  [tex]\frac{3}{4}[/tex]  ;

Note that "dividing by [tex]\frac{3}{4}[/tex] " ; is the same as:

               " multiplying by the reciprocal" [i.e. " [tex]\frac{4}{3}[/tex] " .].

_____________________________________

So, we can rewrite the original given expression in the problem as:

         →  [tex]\frac{19}{4}[/tex]  *  [tex]\frac{4}{3}[/tex]  ;

And simplify:   The "4's " cancel out to "1" ;  {since: "4÷4 = 1"};

and we are left with:  (19/1) * (1/3) = (19 * 1) / ( 1 *3) =  19 / 3 ;

And we can continue as aforementioned using "Method 1" above.

________________________________________

Hope this is helpful to you!  Best wishes!

________________________________________

ACCESS MORE