Respuesta :
Answer:
Step-by-step explanation:
4 3/4 divided by 3/4
= 19/4 ÷ 3/4
= 19/4 ÷ 4/3
= 19/3
= 6 1/3
Answer: " [tex]\frac{19}{3}[/tex] " ;
or, write as: " [tex]6\frac{1}{3}[/tex] " ;
or, write as: " 6.333 " .
______________________________________
Step-by-step explanation:
Method 1)
[tex]4\frac{3}{4}[/tex] ÷ [tex]\frac{3}{4}[/tex] ;
= 4.75 ÷ 0.75 ;
= [tex]\frac{4.75}{0.75}[/tex] ;
Now, multiply Both the "numerator" AND the "denonimator" by "100" ; to get rid of both decimal values ;
→ [tex]\frac{4.75}{0.75}[/tex] ;
= [tex]\frac{4.75*100}{0.75*100}[/tex] ;
Note: Let us start with the "numerator":
_________________________________________
" 4.75 * 100 = ? " ;
→ When we "multiply" by "100" ; we move the decimal place
"Forward" by "2 (two) spaces" ;
→ {that is; "Forward" because we "multiply" ; and "2 (two)" spaces because we are multiplying by a positive integer value that begins with a "1" followed by: "2 (two)" whole-number digits; specifically; we are multiplying by the number; "100" .}.
→ 4.75 * 100 = 475.
_________________________________________
Now, continue with the "denominator":
_________________________________________
→ 0.75 * 100 = 75.
_________________________________________
Now, rewrite the expression:
_________________________________________
→ 4.75 ÷ 0.75 ;
= [tex]\frac{4.75*100}{0.75*100}[/tex] ;
= [tex]\frac{475}{75}[/tex] ;
To simplify, divide Both the "numerator" AND the "denominator" by: "25" ;
→ [tex]\frac{475}{75}[/tex] ;
= {475÷25} / {75÷25} ;
= 19/3 ;
Write the answer as:
→ " [tex]\frac{19}{3}[/tex] " ;
as the most simplified form of an "improper fraction" ;
or: → [tex]\frac{19}{3}[/tex]
= 19 / 3 = 19 ÷ 3 = ? ;
______________________________________
6 R 1
3 ⟌19
- 18
1
______________________________________
→ or: write as: " [tex]6\frac{1}{3}[/tex] " ;
or using calculator: 19/3 = 19 ÷ 3 = 6.333333.... ; → round to: " 6.333 " .
______________________________________
The answer is: " [tex]\frac{19}{3}[/tex] " ;
or, write as: " [tex]6\frac{1}{3}[/tex] " ;
or, write as: " 6.333 " .
______________________________________
Method 2) [tex]4\frac{3}{4}[/tex] ÷ [tex]\frac{3}{4}[/tex] = ? ;
______________________________________
Convert: " [tex]4\frac{3}{4}[/tex] " to an "improper fraction" ;
→ [tex]4\frac{3}{4}[/tex] ;
→ Multiply the "4" [taken from "4" in the "[tex]\frac{3}{4}[/tex]" ];
by the "whole number , "4" ; to get "16" ;
then Add "3" [taken from the "3" in the "[tex]\frac{3}{4}[/tex]" ];
to the "16" ; to get:
→ 16 + 3 ;
= " 19" ;
→ which is the "numerator" of the "improper fraction" form of the "original, mixed number version" ;
→ The "4" [taken from "4" in the "[tex]\frac{3}{4}[/tex]" ]; is the
"denominator" of the "improper fraction" form of the "original, mixed number version" ;
→ And rewrite the mixed number: " [tex]4\frac{3}{4}[/tex] " ; as:
→ " [tex]\frac{19}{4}[/tex] " .
Now, we can rewrite the original problem:
→ [tex]\frac{19}{4}[/tex] ÷ [tex]\frac{3}{4}[/tex] ;
Note that "dividing by [tex]\frac{3}{4}[/tex] " ; is the same as:
" multiplying by the reciprocal" [i.e. " [tex]\frac{4}{3}[/tex] " .].
_____________________________________
So, we can rewrite the original given expression in the problem as:
→ [tex]\frac{19}{4}[/tex] * [tex]\frac{4}{3}[/tex] ;
And simplify: The "4's " cancel out to "1" ; {since: "4÷4 = 1"};
and we are left with: (19/1) * (1/3) = (19 * 1) / ( 1 *3) = 19 / 3 ;
And we can continue as aforementioned using "Method 1" above.
________________________________________
Hope this is helpful to you! Best wishes!
________________________________________