Respuesta :

Answer:

1 ) sin 165°

2 ) cos 330°

3 ) Tan 157.5°

4 ) [tex]sin^2 157.5[/tex]

Step-by-step explanation:

1 )

Given expression is  [tex]\sqrt{\frac{1-cos330}{2} }[/tex]

We know that [tex]cos2x=1-2sinx^{2}[/tex]

[tex]sinx^{2}=\frac{1-cos2x}{2}[/tex]

[tex](sinx/2)^2=\frac{1-cosx}{2}[/tex]

So the first expression is sin (330/2)° =sin 165°

2 )

GIven expression is  [tex]1-2sin^2165[/tex]

We know that [tex]cos2x=1-2sinx^{2}[/tex]

So the result is cos 330°

3 )

Given expression is [tex]\frac{1-cos 315}{sin315}[/tex]

We know that [tex]cos2x=1-2sinx^{2}[/tex]

Also we know that sin2x = 2sinxcosx

So The numerator becomes [tex]2sin^2x/2[/tex]. and the denominator becomes as [tex]2sinx/2cosx/2[/tex]

[tex]\frac{2sin^2x/2}{2sinx/2cosx/2}=tanx/2[/tex]

So the result is Tan 157.5°

4 )

Given expression is [tex]\frac{1-cos 315}{2}[/tex]

We know that [tex]cos2x=1-2sinx^{2}[/tex]

[tex](sinx/2)^2=\frac{1-cosx}{2}[/tex]

So the result is [tex]sin^2 157.5[/tex]

Answer:

CORRECT

Step-by-step explanation:

ACCESS MORE