Respuesta :

Answer:

The composition of f and g is given by

[tex]f(g(x))=4x(4x+6)+9[/tex]

Step-by-step explanation:

Given function f is defined by [tex]f(x)=x^{2}[/tex] and the

function g is defined by [tex]g(x)=4x+3[/tex]

Now to find the composition of f and g:

ie.,to find f(g(x)):

we know that [tex](f \circ g)x=f(g(x))[/tex]

[tex]f(g(x))=f(4x+3)[/tex]

[tex]f(g(x))=(4x+3)^{2}[/tex]

[tex]f(g(x))=(4x)^{2}+2(4x)(3)+(3)^{2}[/tex]

[tex]f(g(x))=16x^{2}+24x+9[/tex]

[tex]f(g(x))=4x(4x+6)+9[/tex]

Therefore  [tex]f(g(x))=4x(4x+6)+9[/tex]

Therefore the  composition of f and g is  [tex]f(g(x))=4x(4x+6)+9[/tex]

ACCESS MORE