Respuesta :

Answer:

The slope of line r is [tex]\dfrac{ 4}{9}[/tex]

Step-by-step explanation:

Given as :

The points that line p contains is A ( - 1 , 4 )  and  B ( 3 , - 5 )

Let The slope of line p = [tex]m_1[/tex]

So,  [tex]m_1[/tex] = [tex]\dfrac{y_2-y_1}{x_2-x_1}[/tex]

Or , [tex]m_1[/tex] = [tex]\dfrac{ - 5 - 4}{3 - (- 1)}[/tex]

Or, [tex]m_1[/tex] = [tex]\dfrac{ - 9}{4}[/tex]

Now, Again ,

Line q is parallel to the line p

let The slope of line q  =  [tex]m_2[/tex]

So, for parallel lines

slope of lines are equal

I.e  [tex]m_2[/tex] = [tex]m_1[/tex]

 [tex]m_2[/tex] = [tex]\dfrac{ - 9}{4}[/tex]

Again ,

Line r is perpendicular to the line q

let The slope of line r  =  [tex]m_3[/tex]

So, for perpendicular lines

The product of the slopes of two line = - 1

[tex]m_3[/tex] × [tex]m_2[/tex] = - 1

or, [tex]m_3[/tex] ×  [tex]\dfrac{ - 9}{4}[/tex]  = - 1

or,  [tex]m_3[/tex]  = [tex]\frac{-1}{\frac{-9}{4}}[/tex]

∴  [tex]m_3[/tex] =  [tex]\dfrac{ 4}{9}[/tex]

So, The slope of line r =  [tex]m_3[/tex] =  [tex]\dfrac{ 4}{9}[/tex]

Hence , The slope of line r is [tex]\dfrac{ 4}{9}[/tex]  . Answer

ACCESS MORE