Let θ (in radians) be an acute angle in a right triangle and let x and y, respectively, be the lengths of the sides adjacent to and opposite θ. Suppose also that x and y vary with time. At a certain instant x=9 units and is increasing at 9 unit/s, while y=5 and is decreasing at 19 units/s. How fast is θ changing at that instant?

Respuesta :

Answer:

[tex]\frac{d\theta}{dt}=-149.7735[/tex] negative sign indicates decreasing.

Explanation:

Given:

  • [tex]x=9\ units[/tex]
  • [tex]y=5\ units[/tex]
  • [tex]\frac{dx}{dt} =9\ units.s^{-1}[/tex]
  • [tex]\frac{dy}{dt} =-19\ units.s^{-1}[/tex]

Using trigonometric relation of the sides and angles of a right angled triangle:

[tex]tan\ \theta=\frac{y}{x}[/tex] ...........................(1)

Differentiate this eq. w.r.to time 't':

[tex]\frac{d}{dt} (tan\ \theta)=\frac{d}{dt}( \frac{y}{x})[/tex]

[tex]sec^2\ \theta\ \frac{d\theta}{dt} =\frac{x\frac{dy}{dt}-y\frac{dx}{dt}  }{x^2}[/tex]

[tex]\frac{d\theta}{dt}=\frac{cos^2\ \theta}{x^2} (x\frac{dy}{dt}-y\frac{dx}{dt})[/tex] ............(2)

Now , putting the respective values in eq. (2)

[tex]\frac{d\theta}{dt}=\frac{cos^2\ \theta}{9^2} (9\times(-19)-5\times5)[/tex]

[tex]\frac{d\theta}{dt}=\frac{-196\ cos^2\ \theta}{81}[/tex] ......................(3)

Now, determine cos θ from the triangle:

[tex]cos\ \theta =\frac{x^2}{\sqrt{x^2+y^2} }[/tex]

[tex]cos\ \theta =\frac{9^2}{\sqrt{9^2+5^2} }[/tex]

[tex]cos\ \theta =\frac{81}{\sqrt{81+25} }[/tex]

[tex]cos\ \theta =7.8674[/tex]

Putting this value in eq. (3)

[tex]\frac{d\theta}{dt}=\frac{-196\times 61.896}{81}[/tex]

[tex]\frac{d\theta}{dt}=-149.7735[/tex] negative sign indicates decreasing.

Answer:

Explanation:

According to question

tan θ = y / x

Differentiate with respect to t on both the sides

[tex]Sec^{2}\theta \times \frac{d\theta }{dt}=\frac{x\times dy/dt-y\times dx/dt}{x^{2}}[/tex]

[tex]\frac{d\theta }{dt}=\frac{x\times dy/dt-y\times dx/dt}{x^{2}\times Sec^{2}\theta}[/tex]   .... (1)

According to question,

tan θ = 5 / 9

So, Sec θ = 10.3 / 9 = 1.14

dx/dt = 9 units/s

dy/dt = 19 units/s

Substitute the values in equation (1), we get

[tex]\frac{d\theta }{dt}=\frac{9\times 19-5\times 9}{81\times 1.14^{2}}[/tex]

dθ/dt = 1.2 units/s

ACCESS MORE