Answer:
Option (B) is the correct answer to the following question.
Step-by-step explanation:
Step-1: We have to find the Mean of the series.
The series is Given in the question 62 61 61 57 61 54 59 58 59 69 60 67.
[tex]Mean(\overline{x})=\frac{62+61+61+57+61+54+59+58+59+69+60+67}{12}[/tex] [tex]= 60.67[/tex]
Step-2: We have to find the Standard Deviation.
Let Standard Deviation be x.
Formula of Standard Deviation is: [tex]s= \sqrt{\frac{\sum(x_{i}+\overline{x})}{n-1}}[/tex]
Put value in formula of Standard Deviation,
[tex]s= \sqrt{\frac{(62+60.67)^{2}+(61+60.67)^{2}+(61+60.67)^{2}+(57+60.67)^{2}+....(67+60.67)^{2}}{n-1}}[/tex] = 40.75
Step-3: Then, we have to find the critical value by chi-square.
[tex]X_{1-\alpha/2}^{2}=3.82[/tex]
[tex]X_{1-\alpha/2}^{2}=21.92[/tex]
Then, find the confidence interval which is 95%.
[tex]\sqrt{\frac{(n-1).s^2}{X_{\alpha/2}^{2}} } = \sqrt{\frac{12-1}{21.92}.(4.075)^2 }\approx2.8868 \\ i.e 2.9[/tex]
[tex]\sqrt{\frac{(n-1).s^2}{X_{\alpha/2}^{2}} } = \sqrt{\frac{12-1}{3.816}.(4.075)^2 }\approx6.9188 \\ i.e 6.9[/tex]