contestada

Write an equation that is perpendicular to
3x - 5y = 5 and passes through the point
(9, -14).

Respuesta :

Answer:

[tex]y=-\frac{5}{3}x+1[/tex]

Step-by-step explanation:

Given:

Equation of the line.

[tex]3x-5y=5[/tex]

And passes through the point (9, -14)

Solution:

Now, we have to write an equation that is perpendicular to 3x -5y = 5 and passes through the point (9, -14).

Now, we write the given equation in [tex]y=mx+b[/tex] form.

[tex]3x-5y=5[/tex]

[tex]5y=3x-5[/tex]

[tex]y=\frac{3}{5}x-\frac{5}{5}[/tex]

[tex]y=\frac{3}{5}x-1[/tex]

So, the slope of the line is [tex]m=\frac{3}{5}[/tex].

The slope of the perpendicular line is [tex]-\frac{1}{m}[/tex]

now, we substitute m value in above relation.

[tex]=-\frac{1}{\frac{3}{5}}[/tex]

[tex]=-\frac{5}{3}[/tex]

So the equation of the perpendicular line is:

[tex]y=-\frac{5}{3}x+b[/tex]--------(1)

Lets us find  b from the given points (9, -14).

[tex]-14=-\frac{5}{3}\times 9+b[/tex]

[tex]-14=-5\times 3+b[/tex]

[tex]-14=-15+b[/tex]

[tex]b=15-14[/tex]

[tex]b=1[/tex]

Now, we substitute b value in equation 1.

[tex]y=-\frac{5}{3}x+1[/tex]

Therefore, the equation of the perpendicular line is

[tex]y=-\frac{5}{3}x+1[/tex]

ACCESS MORE