Answer:
21.73 cm
Explanation:
We have given parameters:
Mass of block, m = 2.0 kg
Force constant of spring, k = 264 N/m
Length of rough area, L = 10 cm = 0.1 m
Co-efficient of kinetic friction , [tex]\mu_{k}[/tex] = 0.54
Block's speed after crossing rough area, v = 2.7 m/s
Block's initial speed ( when it was released from compressed spring), [tex]v_{0}[/tex] = 0 m/s
We need to find the distance that the spring was initially compressed, x = ?
Hence, we well apply Work-Energy principle which indicates that,
Work done by the friction = Change in the total energy of block
[tex]- \mu_{k} * mg * L = (\frac{1}{2} * mv^{2} - \frac{1}{2} * mv_{0} ^{2} ) + (0 - \frac{1}{2} * kx^{2})[/tex]
-0.54 * 2 * 9.8 * 0.1 = (1/2 * 2 * [tex]2.7^{2}[/tex] - 1/2 * 2 * 0) + (0 - 1/2 * 264 * [tex]x^{2}[/tex])
x = 0.2173 m = 21.73 cm