Answer:
The equation of the line is 2 x + y = 8.
Step-by-step explanation:
Here the given points are ( 2, 4) & ( 4, 0)
Equation of a line whose points are given such that
( [tex]x_{1}, y_{1}[/tex]) & ( [tex]x_{2}, y_{2}[/tex] )-
y - [tex]y_{1}[/tex] = [tex]\frac{ y_{2} - y_{1} }{ x_{2} - x_{1} }[/tex] ( x - [tex]x_{1}[/tex] )
i.e. y - 4 = [tex]\frac{ 0 - 4}{ 4 - 2}[/tex] ( x- 2)
y - 4 = [tex]\frac{- 4}{2}[/tex] ( x - 2 )
y - 4 = - 2 ( x - 2 )
y - 4 = - 2 x + 4
2 x + y = 8
Hence the equation of the required line whose passes trough the points ( 2, 4) & ( 4, 0) is 2 x + y = 8.