Respuesta :

Answer:

The equation of the line is 2 x + y = 8.

Step-by-step explanation:

Here the given points are ( 2, 4) & ( 4, 0)

Equation of a line whose points are given such that

( [tex]x_{1}, y_{1}[/tex]) & ( [tex]x_{2}, y_{2}[/tex] )-

 y - [tex]y_{1}[/tex]  =   [tex]\frac{ y_{2} - y_{1} }{ x_{2} - x_{1} }[/tex] ( x - [tex]x_{1}[/tex] )

i.e.  y - 4 = [tex]\frac{ 0 - 4}{ 4 - 2}[/tex]   ( x- 2)

    y - 4 =  [tex]\frac{- 4}{2}[/tex] ( x - 2 )

    y - 4 = - 2  ( x - 2 )

     y - 4 =  - 2 x + 4

    2 x + y = 8

Hence the equation of the required line whose passes trough the points ( 2, 4) & ( 4, 0)  is 2 x + y = 8.