Answer:
[tex]V = 0.5752 m^3/s[/tex]
Explanation:
given data:
[tex]T_1 = 1200 K[/tex]
[tex]p_1 = 900 kPa[/tex]
[tex]T_2 = 800 K[/tex]
[tex]W_{out} = 650 kW[/tex]
cp= 1.13 kJ/kg K
CV = 0.83 kJ/kg K
FROM ENERGY BALANCE EQUATION
[tex]E_{IN} - E_{OUT} = \Delta E_{SYS} = 0[/tex]
[tex]E_{IN} = E_{OUT} [/tex]
[tex]\dot m h_1 = W_{out} + \dot m h_2[/tex]
[tex]\dot m =\frac{W_{out}}{h_1 -h_2}[/tex]
[tex]\dot m = \frac{w_{out}}{cp(T_1 -T_2)}[/tex]
[tex]\dot m = \frac{650}{1.13 \times (1200-800)}[/tex]
[tex]\dot m = 1438 kg/s[/tex]
sir specific volume is given as
[tex]v_1 = \frac[RT_1}{P_1}[/tex]
[tex]v_1 = \frac{0.3 \times 1200}{900} [/tex]
[tex]v_1 = 0.4 m^3/kg[/tex]
volume of flow rate
[tex]V = 1.438 \times 0.4 = 0.5752 m^3/s[/tex]