Answer:
(a) E = 73.5mJ
(b) v = 2.188 m/s
(c) KE = 55.1 mJ
(d) PE = 18.37mJ
Explanation:
m = mass of the object = 0.03 kg
k = spring constant = 30 N/m
A = amplitude = 0.07 m
For part (a)
The total energy of the system can be found by:
E = k × A² / 2
E = (30 N/m) × (0.07 m)² / 2
E = 0.0735 J
E = 73.5mJ
For part (b)
The elastic potential energy in the spring at position d = 0.0105 m is:
PE = k × d² / 2
PE = (30 N/m) × (0.0105 m)² / 2
PE = 0.00165375 J
The kinetic energy at that point is:
KE = E - PE
KE = (0.0735 - 0.00165375)
KE = 0.07184 J
So its speed is:
KE = m × v² / 2
v = √( 2 × KE / m )
v = √( 2 × (0.07184 J) / (0.03 kg) )
v = 2.188 m/s
For part (d)
The elastic potential energy in the spring at position d = 0.035 m is:
PE = k × d² / 2
PE = (30 N/m) × (0.035 m)² / 2
PE = 0.018375 J
PE = 18.37mJ
For part(c)
The kinetic energy at that point is:
KE = E - PE
KE = (0.0735J) - (0.018375 J)
KE = 0.0551 J
KE = 55.1 mJ