Answer:
[tex]\dot m = 0.062456 kg/sec[/tex]
b) w = 0.927211 kW
Explanation:
from table R-134 a
state 1
P-1 = 400 kPa
h_1 = hg@400 kpa = 255.55 kJ?kg
s1 = s2 = 0.92961 kJ/kg K
state 2
P-2 = 800 kPa
s2 =s1 = 0.92691
s2> sg@ 800 kPa = 0.92691 kJ/ kg K
from superheated table for R-134 a at pressure of 800 kPa
using interpolation for obtaining desire value of temperature and enthalapy
[tex]\frac{T_2 - 31.31}{40 - 31.31} = \frac{0.9306 - 09183}{0.9480 - 0.9183}[/tex]
T_2 = 34.75 degree C
FOR ENTHALAPY
[tex]\frac{h_2 - 267.29}{276.45 - 267.29} = \frac{0.92691 - 0.9183}{0.9480 - 0.9183}[/tex]
h_2 = 270.3928 kJ/kg
state 3
[tex]P_3 = 800 kPA[/tex]
[tex]H_3 = Hf@800 kPa = 95.47 kJ/kg[/tex]
state 4 ( h remain constant)
[tex]h_4 =h_3 = 95.47 kJ/kg[/tex]
a) mass flow rate [tex]\dot m = \frac{cooling head}{\phi _{in}}[/tex]
[tex]\dot m = \frac{10 kW}{255.55 - 95.47}[/tex]
[tex]\dot m = 0.062456 kg/sec[/tex]
b) compressor power [tex]w = \dot m [h_2 -h_1][/tex]
w = 0.062456(270.3928 - 255.55)
w = 0.927211 kW