Respuesta :
Answer:
a. I = 167.31 x 10 ⁻³ kg*m²
b. T = 4.59 kg * m² / s²
Explanation:
The moment of inertia of a uniform cylinder:
a.
r = 7.8 cm * 1 m / 100 cm = 0.078 m
I = ½ * m * r²
I = ½ * 0.55 kg * (0.078²m)
I = 167.31 x 10 ⁻³ kg*m²
b.
T = Iα’ + Iα,
α’ = ω’/t = 1750 rpm * (2π/60) / 7.40s = 24.76 rad/s²
α = ω/t = 1500 rpm * (2π/60) / 58 = 2.71 rad/s²
T = (167.31 x 10⁻³ kg*m²)* (24.76 + 2.71 ) rad / s²
T = 4.59 kg * m² / s²
The moment of inertia and the applied torque of the uniform cylinder calculated using the given parameters are :
- 167.3 x 10 ⁻³ kgm²
- 4.59 kgm²/s²
Given the Parameters :
- Radius, r = 7.8cm = 0.078 m
- Mass , m = 0.55kg
- Time, t = 7.40 s
- Angular velocity, ω = 1750 rpm
Moment of inertia about it's center :
- Moment of Inertia, I = 0.5mr²
I = 0.5(0.55)(0.078²)
I = 167.3 x 10 ⁻³ kgm²
b.)
- Applied torque = T = I(α’ + α)
Converting the velocity to radian per seconds :
α’ = 1750 rpm = (2π/60) / 7.40s = 24.76 rad/s²
α = 1500 rpm * (2π/60) / 58 = 2.71 rad/s²
T = 167.31 x 10⁻³(24.76 + 2.71 )
T = 4.59 kgm²/s²
Therefore, applied torque ls 4.59 kgm²/s²
Learn more : https://brainly.com/question/9807228