Respuesta :
Answer:
a) [tex]\angle r_{ag}=38.79^{\circ}[/tex]
b) [tex]\angle r_{gw}=44.95^{\circ}[/tex]
c) not possible
Explanation:
Given:
angle of incidence on the air-glass interface, [tex]\angle i_{ag}=90-20=70^{\circ}[/tex]
refractive index of glass with respect to air, [tex]n_g=1.5[/tex]
refractive index of water with respect to air, [tex]n_a=1.33[/tex]
a)
For angle of refraction in glass we use Snell's law:
[tex]n_g=\frac{sin\ i_{ag}}{sin\ r{ag}}[/tex]
[tex]1.5=\frac{sin\ 70}{sin\ r_{ag}}[/tex]
[tex]\angle r_{ag}=38.79^{\circ}[/tex]
b)
Now we have angle of incident for glass-water interface, [tex]\angle i_{gw}=\angle r_{ag}=38.79^{\circ}[/tex]
And the refractive index of water with respect to glass:
[tex]n_{gw}=\frac{n_w}{n_g}[/tex]
[tex]n_{gw}=\frac{1.33}{1.5}[/tex]
[tex]n_{gw}=0.8867 [/tex]
Therefore, angle of refraction in the water:
[tex]n_{gw}=\frac{sin\ i_{gw}}{sin\ r_{gw}}[/tex]
[tex]0.8867 =\frac{sin\ 38.79}{sin\ r_{gw}}[/tex]
[tex]\angle r_{gw}=44.95^{\circ}[/tex]
c)
For total internal reflection through water the light must enter the glass-water interface at an angle greater than the critical angle.
So,
[tex]n_{gw}=\frac{sin\ i_{(gw)_c}}{sin\ 90}[/tex]
[tex]0.8867 =\frac{sin\ i_{(gw)_c}}{1}[/tex]
[tex]i_{(gw)_c}=62.46^{\circ}[/tex]
Now this angle will become angle of refraction for the air-glass interface.
Hence,
[tex]n_g=\frac{sin\ i_{ag}}{sin\ i_{(gw)_c}}[/tex]
[tex]1.5=\frac{sin\ i_{ag}}{0.8867 }[/tex]
[tex]sin\ i_{ag}=1.33005[/tex]
Since we do not have any angle for sine for which the value exceeds 1, therefore it is not possible that the light will reflect from the water.