Answer:
a) 0.0007326
b) 0.03223
c) 0.2418
d) 0.2418
Explanation:
To find different probabilities for the selection of components among eleven good and four defective components, we will use the Combination.
a) [tex]C(4,4) = 1; C(15,4) = 1365[/tex]
[tex]P = \frac{C(4,4)}{C(15,4)} = \frac{1}{1365} = 0.0007326[/tex]
b) [tex]C(4,3) = 4; C(11,1) = 11[/tex]
[tex]P = \frac{C(4,3)*C(11,1)}{C(15,4)} = \frac{4*11}{1365} = 0.03223[/tex]
c) [tex]C(4,2) = 6; C(11,2) = 55[/tex]
[tex]P = \frac{C(4,2)*C(11,2)}{C(15,4)} = \frac{6*55}{1365} = 0.2418[/tex]
d) [tex]C(11,4) = 330[/tex]
[tex]P = \frac{C(11,4)}{C(15,4)} = \frac{330}{1365} = 0.2418[/tex]