Answer: a) 423 b) 17
Step-by-step explanation:
As per given , we have
E=4% = 0.04
Confidence level : 90%
The critical value for 90% confidence interval : z*=1.645
a) When the prior estimate of the population proportion is unknown , then the formula to find the sample size is given by :-
[tex]n=0.25(\dfrac{z^*}{E})^2[/tex]
, where E = margin of error.
z* = Critical value.
Required sample size : [tex]n=0.25(\dfrac{1.645}{0.04})^2[/tex] (Substitute the given values in the formula)
[tex]n=0.25(41.125)^2[/tex]
[tex]n=0.25(41.125)^2=422.81640625\approx423[/tex]
i.e. n= 423
b) When the prior estimate of the population proportion is known , then the formula to find the sample size is given by :-
[tex]n=p(1-p)(\dfrac{z^*}{E})^2[/tex]
, where p = Population proportion from prior study.
E = margin of error.
z* = Critical value.
here p= 0.99
[tex]n=0.99(1-0.99)(\dfrac{1.645}{0.04})^2[/tex] (Substitute the given values in the formula)
[tex]n=0.0099(41.125)^2=16.7435296875\approx17[/tex]
i.e. n= 17