ABC is an equilateral triangle with sides equal to 2 cm. BC is extended its own length to D, and E is the midpoint of AB. ED meets AC at F. Find the area of the quadrilateral BEFC in square centimeters in simplest radical form.

Respuesta :

Answer:

[tex]\frac{2\sqrt3}{3}[/tex] [tex]cm^2[/tex]

Step-by-step explanation:

Since [tex]\triangle ABC[/tex] is equilateral triangle, then [tex]\angle A = \pi /3[/tex]

So,

[tex]S_{\triangle ABC} = \frac{2 * 2 * sin(\pi /3)}{2} = \frac{2 * 2 * \sqrt{3}/2}{2} = \sqrt{3}[/tex] [tex]cm^2[/tex]

Then we need to find [tex]S_{\triangle AEF}[/tex] which can be computed by finding length_AF.

Let's call x = length_AF.

By Menelao's Theorem,

[tex]\frac{BE*x*CD}{AE*(2-x)*BD} = \frac{1*x*2}{1*(2-x)*4}  = 1[/tex]

⇒ x = 4/3 cm

Thus,

[tex]S_{\triangle AEF} = \frac{1 * x * sin(\pi /3)}{2} = \frac{1 * 4/3 * \sqrt{3}/2}{2} = 1/\sqrt{3}[/tex] [tex]cm^2[/tex]

To find the area of quadrilateral [tex]BEFC[/tex], we have to subtract [tex]S_{\triangle AEF}[/tex] from [tex]S_{\triangle ABC}[/tex]

Hence,

[tex]S_{BEFC} = S_{\triangle ABC} - S_{\triangle AEF} = \sqrt3 -1/\sqrt3 = \frac{2\sqrt3}{3}[/tex] [tex]cm^2[/tex]

ACCESS MORE