Answer:
[tex]\large \boxed{\text{(a) 42 000 yr; (b) 45 000 yr}}[/tex]
Explanation:
Two important equations in radioactive decay are
[tex]\ln \dfrac{N_{0} }{N_{t}} = kt\\\\t_{\frac{1}{2}} = \dfrac{\ln2}{k }[/tex]
We use them for carbon dating.
(a) Initial activity = 0.23 Bq
(i) Calculate the rate constant
The half-life of ¹⁴C is 5730 yr.
[tex]\begin{array}{rcl}t_{\frac{1}{2}}& = &\dfrac{\ln2}{k }\\\\k& = &\dfrac{\ln2}{t_{\frac{1}{2}}}\\\\ & = & \dfrac{\ln2}{\text{5730 yr}}\\\\ & = & 1.210 \times 10^{-4}\text{ yr}^{-1}\\\end{array}[/tex]
(ii) Calculate the age of the sample
[tex]\begin{array}{rcl}\ln \dfrac{N_{0} }{N_{t}} & = & kt\\\\\ln \dfrac{0.23 }{0.0015} & = & k\times 1.210 \times 10^{-4}\text{ yr}^{-1}\\\\\ln 153 & = & 1.210 \times 10^{-4}k \text{ yr}^{-1}\\5.03 & = & 1.210 \times 10^{-4}k \text{ yr}^{-1}\\k & = & \dfrac{5.03}{1.210 \times 10^{-4} \text{ yr}^{-1}}\\\\ & = & \textbf{42 000 yr}\\\end{array}\\\text{The age of the sample is $\large \boxed{\textbf{42 000 yr}}$}[/tex]
(b) Initial activity = 45 % larger
N₀ = 1.45 × 0.230 Bq = 0.334 Bq
[tex]\begin{array}{rcl}\ln \dfrac{N_{0} }{N_{t}} & = & kt\\\\\ln \dfrac{0.334 }{0.0015} & = & k\times 1.210 \times 10^{-4}\text{ yr}^{-1}\\\\\ln 222 & = & 1.210 \times 10^{-4}k \text{ yr}^{-1}\\5.40 & = & 1.210 \times 10^{-4}k \text{ yr}^{-1}\\k & = & \dfrac{5.40}{1.210 \times 10^{-4} \text{ yr}^{-1}}\\\\ & = & \textbf{45 000 yr}\\\end{array}\\\text{The age of the sample is $\large \boxed{\textbf{45 000 yr}}$}[/tex]