A study is going to be conducted in which a mean of a lifetime of batteries produced by a certain method will be estimated using a 90% confidence interval. The estimate needs to be within +/- 2 hours of the actual population mean. The population standard deviation s is estimated to be around 25. The necessary sample size should be at least _______.

Respuesta :

Answer:

The necessary sample size should be at least 423.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.9}{2} = 0.05[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.05 = 0.95[/tex], so [tex]z = 1.645[/tex]

Now, find the margin of error M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the length of the sample.

In this problem, we have that:

[tex]M = 2, \sigma = 25[/tex]. So

[tex]2 = 1.645*\frac{25}{\sqrt{n}}[/tex]

[tex]2\sqrt{n} = 41.125[/tex]

[tex]\sqrt{n} = 20.5625[/tex]

[tex]\sqrt{n}^{2} = (20.5625)^{2}[/tex]

[tex]n = 422.81[/tex]

The necessary sample size should be at least 423.

ACCESS MORE