Answer:
Ka1 = 4.27x10⁻⁷, Ka2 = 2.78x10⁻¹⁶
Explanation:
The number of moles that had reacted when the pH was 6.37 was:
nH₂A = 0.046 L * 0.15 mol/L = 6.9x10⁻³ mol
nKOH = 0.023 L * 0.15 mol/L = 3.45x10⁻³ mol
Thus, H₂A is in excess, and the base will not react with HA⁻ to form A⁻², so the first reaction is absolute, and after the reaction:
nH₂A = 6.9x10⁻³ - 3.45x10⁻³ = 3.45x10⁻³
nHA⁻ = 3.45x10⁻³
Because the volume will be the same, we can use the number of moles instead of the concentrations. So:
6.37 = pKa1 + log(3.45x10⁻³/3.45x10⁻³)
pKa1 = 6.37
Ka1 = [tex] 10^{-6.37}[/tex]
Ka1 = 4.27x10⁻⁷
After 46 mL of KOH was added:
nKOH = 0.046 * 0.15 = 6.9x10⁻³
So, all the H₂A reacts to form HA⁻, and the absolute equilibrium is:
HA⁻ ⇄ H⁺ + A⁻²
6.9x10⁻³ 0 0 Initial
-x +x x Reacts
6.9x10⁻³-x x x Equilibrium
pH = -log[H⁺]
8.34 = -log[H⁺]
[H⁺] = [tex]10^{-8.34}[/tex]
[H⁺] = 4.57x10⁻⁹ M
The total volume is 46 mL + 46 mL = 92 mL = 0.092 L
x = 0.092 L * 4.57x10⁻⁹ = 4.20x10⁻¹⁰ mol
Thus, nHA⁻ = 6.9x10⁻³ - 4.20x10⁻¹⁰ ≅ 6.9x10⁻³
Then,
8.34 = pKa2 + log(4.20x10⁻¹⁰/6.9x10⁻³)
8.34 = pKa2 - 7.216
pKa2 = 15.556
Ka2 = [tex] 10^{-15.556}[/tex]
Ka2 = 2.78x10⁻¹⁶