Respuesta :
Answer:
0.0031 m
Explanation:
y = Length of pixel = 281 μm
L = Distance to screen = 1.3 m
[tex]\lambda[/tex] = Wavelength = 550 nm
d = Pupil diameter
[tex]\theta[/tex] = Angle
We have the expression
[tex]tan\theta=\dfrac{y}{L}\\\Rightarrow \theta=tan^{-1}\dfrac{y}{L}\\\Rightarrow \theta=tan^{-1}\dfrac{281\times 10^{-6}}{1.3}[/tex]
We have the expression
[tex]sin\theta=1.22\dfrac{\lambda}{d}\\\Rightarrow d=\dfrac{1.22\lambda}{sin\theta}\\\Rightarrow d=\dfrac{1.22\times 550\times 10^{-9}}{sin\left(tan^{-1}\frac{281\times 10^{-6}}{1.3}\right)}\\\Rightarrow d=0.0031\ m[/tex]
The pupil diameter is 0.0031 m
The effective diameter d of your pupil should be considered as the 0.0031 when maximum distance should be 1.30 meters.
Calculation of the effective diameter:
Since
y = Length of pixel = 281 μm
L = Distance to screen = 1.3 m
Wavelength = 550 nm
d = Pupil diameter
So,
[tex]tan = y / l\\\\= tan^-1 * 281*10^-6/1.3[/tex]
Now
sin = 1.22 wavelength / d
d = 1.22 * wavelength / sin
[tex]= 1.22*550*10^-9/ sin ( tan^-1 * 281*10^-6/1.3)[/tex]
= 0.0031 m
hence, The effective diameter d of your pupil should be considered as the 0.0031 when maximum distance should be 1.30 meters.
Learn more about wavelength here: https://brainly.com/question/20069636