Respuesta :
Answer:
The area would be 111.41 unit² ( approx )
Step-by-step explanation:
Given,
KLMN is a trapezoid,
In which KL=MN, KM=15, m∠MKN=49°,
Suppose O and P are point in the segment LM, ( shown below )
Such that,
KN = OP,
In triangle MKO,
m∠KMO = 49° ( ∵ KM ║ LM, using alternative interior angle theorem ),
KM = 15 unit ( given )
[tex]\sin 49^{\circ} = \frac{KO}{KM}[/tex]
[tex]\implies KO = KM \sin 49^{\circ}=15 \sin 49^{\circ}[/tex]
i.e. height of the trapezoid KLMN is 15 sin 49°,
Again,
[tex]\cos 49^{\circ} = \frac{OM}{KM}[/tex]
[tex]\implies OM = KM \cos 49^{\circ}=15 \cos 49^{\circ}[/tex]
[tex]OP + PM = 15 \cos 49^{\circ}[/tex]
[tex]\implies KN + PM = 15 \cos 49^{\circ}----(1)[/tex]
Now, in right triangles KOL and NPM,
KL = MN,
OK = NP
By HL postulate of congruence,
Δ KOL ≅ Δ NPM
By CPCTC,
LO = PM,
⇒ LM = LO + OP + PM = PM + OP + PM = OP + 2PM = KN + 2PM-----(2),
Thus, the area of the trapezoid KLMN,
= 1/2 × height × sum of opposite parallel sides
[tex]=\frac{1}{2}\times KO\times (KN+LM)[/tex]
[tex]=\frac{1}{2}\times KO\times (KN+KN + 2PM)[/tex]
[tex]=\frac{1}{2}\times KO\times (2KN+2PM)[/tex]
[tex]=KO\times (KN+PM)[/tex]
[tex]=15 \sin 49^{\circ}\times 15 \cos 49^{\circ}[/tex]
[tex]=111.405157734[/tex]
[tex]\approx 111.41\text{ square unit }[/tex]
![Ver imagen slicergiza](https://us-static.z-dn.net/files/d03/6e8039f6823023d282e6c6bdc6665dcb.jpg)