Respuesta :

Answer:

[tex]y=-5(x-0)^2+5[/tex]

Step-by-step explanation:

Given height of parabola is [tex]5\ m[/tex].

And [tex]2\ m[/tex] wide at ground level.

Also, the parabola opens down.

Let us assume the parabola is aligned on Y-axis

As the height of parabola is [tex]5\ m[/tex]. The maximum height of parabola is achieved when [tex]x=0[/tex].

So, the vertex of parabola is [tex](0,5)[/tex].

The equation of parabola having vertex [tex](h,k)[/tex] is.

[tex]y=a(x-h)^2+k[/tex].

Plugging the vertex of parabola

[tex](h,k)[/tex] [tex]=[/tex] [tex](0,5)[/tex].

[tex]h=0\ and\ k=5[/tex]

[tex]y=a(x-0)^2+5[/tex]

It is given that parabola is [tex]2\ m[/tex] wide at the ground.

As the parabola is aligned on Y-axis. So, distance between X-intercept is [tex]2\ m[/tex].

The X-intercept would be [tex](-1,0)\ and\ (1,0)[/tex]

Plugging [tex](1,0)[/tex] in the equation [tex]y=a(x-0)^2+5[/tex]

[tex]0=a(1-0)^2+5\\\\-5=a(1)^2\\\\-5=a[/tex]

Now, we get [tex]a=-5[/tex] and having vertex [tex]h=0\ and\ k=5[/tex].

So, the equation of parabola is

[tex]y=a(x-h)^2+k[/tex].

[tex]y=-5(x-0)^2+5[/tex]

Ver imagen inchu
ACCESS MORE