Respuesta :
Answer:
a) 5.2170 m/s
b) 2.1911 m/s, to the left
c) 3.0259 m/s, to the right
d) 0.2449 m
Explanation:
Given parameters:
[tex]v_1 = 4.54[/tex] [tex]m/s[/tex]
[tex]h_1 = 0.337[/tex] [tex]m[/tex]
[tex]m_1 = 2.03[/tex] [tex]kg[/tex]
[tex]m_2 = 4.97[/tex] [tex]kg[/tex]
[tex]v_2 = 0[/tex] [tex]m/s[/tex]
a) Here, the conservation of energy principle can be used.
[tex]KE_i + PE_i = KE_f + PE_f\\\frac{1}{2}m_1v_1^2+m_1gh_1 = \frac{1}{2}m_1v_{1f}^2+m_1gh_{1f}[/tex] where [tex]h_{1f} = 0[/tex]
So,
[tex]\frac{1}{2}v_1^2+gh_1 = \frac{1}{2}v_{1f}^2\\v_{1f} = \sqrt{2(\frac{1}{2}v_1^2+gh_1)} = \sqrt{2(\frac{1}{2}*4.54^2+9.8*0.337)} = 5.2170[/tex] [tex]m/s[/tex]
b) Here, the conservation of momentum principle can be used.
[tex]v_{1f} = \frac{m_1-m_2}{m_1+m_2}*v_1[/tex]
Here, our new [tex]v_1[/tex] will be [tex]v_{1f}[/tex] found in part (a).
[tex]v_{1f} = \frac{2.03-4.97}{2.03+4.97} * 5.217 = -2.1911[/tex] [tex]m/s[/tex]
(-) sign means that the 2.03 kg ball after collision will bounce back in the left direction.
c) Here, we can use the conservation of momentum principle again.
[tex]v_{2f} = \frac{2m_1}{m_1+m_2}*v_1[/tex]. Here, [tex]v_1[/tex] will be [tex]v_{1f}[/tex] found in part (a) again.
[tex]v_{2f} = \frac{2 * 2.03}{2.03+4.97} * 5.217 = 3.0259[/tex] [tex]m/s[/tex]
(+) sign means that the 4.97 kg ball after collision will swing to the right direction.
d) Here, we can use the conservation of energy principle again.
[tex]\frac{1}{2}mv^2+mgh = \frac{1}{2}mv_f^2+mgh_f[/tex] where [tex]h = 0[/tex] and [tex]v_f = 0[/tex]
So,
[tex]gh_f = \frac{1}{2}v_1^2[/tex]
[tex]h_f = \frac{v_1^2}{2g} = \frac{(-2.1911)^2}{2*9.8} = 0.2449[/tex] [tex]m[/tex]