Answer:
(38.1,88.6)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = 38.3
Sample size, n = 695
Alpha, α = 0.05
Population standard deviation, σ = 3.6
95% Confidence interval:
[tex]\mu \pm z_{critical}\frac{\sigma}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]
[tex]38.3 \pm 1.96(\frac{3.6}{\sqrt{695}} ) = 38.3 \pm 0.267 = (38.033,38.567) \approx (38.1,88.6)[/tex]