Respuesta :

The rectangle has a perimeter P of 58 inches.The length l is one more than 3 times the width w.write and solve a system of linear equations to find the length and width of the rectangle?

Answer:

Length(L)=22 inches

Width(W) = 7 inches

Step-by-step explanation:

GIven:-

Perimeter (p)=58 inches,

Length(L)= one more than 3 times the width(W)

Let, W=x   ---------------------------------(equation 1

[tex]L=3x+1[/tex]  -----------------------(equation 2)

Here x is unknown and to find the Width(W) we have to find the value of x.

Now,

Perimeter of rectangle(p) = 2 times length(L) + 2 times width(W)

[tex]p=2L+2W[/tex]

[tex]p=2(3x+1)+2x[/tex]  ----------------(from equation 1)

[tex]58=6x+2+2x[/tex]   ----------------(given p=58 inches)

[tex]58=8x+2[/tex]

[tex]8x=58-2[/tex]

[tex]8x=56[/tex]

[tex]x=\frac{56}{8}[/tex]

[tex]x=7[/tex]          ----------------------(equation 3)

Now substituting the value of equation 3 in equation 2.

[tex]L=3x+1[/tex]

[tex]L=(3\times 7)+1[/tex]

[tex]L=21+1[/tex]

[tex]L=22[/tex]

[tex]L=22 inches[/tex]

as, [tex]W=x[/tex]   -----------------------(from equation 1)

[tex]W=7[/tex] inches -------------------(equation 3)

Therefore, Length(L) = 22 inches and Width(W) = 7 inches.

ACCESS MORE