The rectangle has a perimeter P of 58 inches.The length l is one more than 3 times the width w.write and solve a system of linear equations to find the length and width of the rectangle?
Answer:
Length(L)=22 inches
Width(W) = 7 inches
Step-by-step explanation:
GIven:-
Perimeter (p)=58 inches,
Length(L)= one more than 3 times the width(W)
Let, W=x ---------------------------------(equation 1
[tex]L=3x+1[/tex] -----------------------(equation 2)
Here x is unknown and to find the Width(W) we have to find the value of x.
Now,
Perimeter of rectangle(p) = 2 times length(L) + 2 times width(W)
[tex]p=2L+2W[/tex]
[tex]p=2(3x+1)+2x[/tex] ----------------(from equation 1)
[tex]58=6x+2+2x[/tex] ----------------(given p=58 inches)
[tex]58=8x+2[/tex]
[tex]8x=58-2[/tex]
[tex]8x=56[/tex]
[tex]x=\frac{56}{8}[/tex]
[tex]x=7[/tex] ----------------------(equation 3)
Now substituting the value of equation 3 in equation 2.
[tex]L=3x+1[/tex]
[tex]L=(3\times 7)+1[/tex]
[tex]L=21+1[/tex]
[tex]L=22[/tex]
[tex]L=22 inches[/tex]
as, [tex]W=x[/tex] -----------------------(from equation 1)
[tex]W=7[/tex] inches -------------------(equation 3)
Therefore, Length(L) = 22 inches and Width(W) = 7 inches.