Respuesta :
Answer:
y (t) = 0.754 * cos ( 7.96 t - 69.52)
Explanation:
Given:
m = 1.5 kg , k = 95 N / m , v₀ = 6 m / s , d = 0.35 m , t = 0
y (t) = A * cos ( ω * t - φ )
Using the equation that describe the motion
m * v = - k * x ⇒ m * x'' = - k * x
Angular velocity is equal to
ω = √ k / m ⇒ ω = √ 95 N /m / 1.5 kg
ω = 7.96 rad /s
A = v / ω ⇒ A = 6 m /s / 7.96 rad / s
A = 0.754
d = cos * φ ⇒ φ = cos ⁻¹ * 0.35
φ = 69.52
y (t) = A * cos ( ω * t - φ ) ⇒ y (t) = 0.754 * cos ( 7.96 t - 69.52)
Answer:
The angular frequency of spring-mass system is 7.95 rad/s.
The phase angle is 65.11 degree.
Explanation:
Given data:
The mass is, [tex]m=1.5 \;\rm kg[/tex].
The value of spring constant is, [tex]k=95 \;\rm N/m[/tex].
Distance covered at t=0 is, [tex]y (t=0) = 0.35 \;\rm m[/tex]
Upward speed is, [tex]v_{0}=6 \;\rm m/s[/tex].
The position of mass is,
[tex]y(t)=Acos(\omega t-\phi)[/tex]
Here, A is amplitude of vibration, [tex]\omega[/tex] is the angular frequency, t is time and [tex]\phi[/tex] is the phase angle.
(a)
The expression for the angular frequency of spring-mass system is:
[tex]\omega =\sqrt\frac{k}{m}[/tex]
Substitute the values as,
[tex]\omega =\sqrt\dfrac{95}{1.5}\\[/tex]
[tex]\omega = 7.95 \;\rm rad/s[/tex]
Thus, the value of angular frequency is 7.95 rad/s.
(b)
The position of mass is, [tex]y(t)=Acos(\omega t-\phi)[/tex].
Differentiating the above equation to obtain the speed as,
[tex]y(t)=Acos(\omega t-\phi)\\y'(t)= v_{0}=-A\omega sin(-\phi)[/tex]
At time t=0,
[tex]y(t=0)=A cos(\omega (0)-\phi)\\y(t=0)=A cos(-\phi)\\45= A cos(-\phi) .....................................................(1)[/tex]
Speed of system is,
[tex]6=-A\omega sin(-\phi) ............................................(2)[/tex]
Taking ratio of equation (2) and (1) as,
[tex]\dfrac{-A \omega sin(- \phi)}{Acos(\phi)} = \dfrac{6}{0.35} \\\\7.95 \times tan(\phi) = \dfrac{6}{0.35} \\\phi = tan^{-1}(\dfrac{6}{0.35 \times 7.95}) \\\phi =65.11 \;\rm degree[/tex]
Thus, the phase angle is 65.11 degree.
For more details, refer to the link:
https://brainly.com/question/14670501?referrer=searchResults