Respuesta :
Answer: The graph is attached.
Step-by-step explanation:
The equation of the line in Slope-Intercept form is:
[tex]y=mx+b[/tex]
Where "m" is the slope and "b" is the y-intercept.
So, having the first equation:
[tex]y=- 6x - 2[/tex]
You can identify that:
[tex]m=-6\\b=-2[/tex]
By definition, the line intersects the x-axis when [tex]y=0[/tex]. Subsituting this value into the equation and solving for "x", you get that the x-intercept is the following:
[tex]0=- 6x - 2\\\\2=-6x\\\\x=-\frac{1}{3}\\\\x=-0.333[/tex]
Now you can graph the line.
Now you must solve for "y" from the second equation:
[tex]y +2=- 6x\\\\y=-6x-2[/tex]
You can identify that:
[tex]m=-6\\b=-2[/tex]
Notice that the slopes and the y-intercepts of the first line and the second line are equal; this means that they are exactly the same line and the System of equations has Infinitely many solutions.
See the graph attached.