Read the proof. Given: AEEC; BDDC Prove: △AEC ~ △BDC Statement Reason 1. AEEC;BDDC 1. given 2. ∠AEC is a rt. ∠; ∠BDC is a rt. ∠ 2. definition of perpendicular 3. ∠AEC ≅ ∠BDC 3. all right angles are congruent 4. ? 4. reflexive property 5. △AEC ~ △BDC 5. AA similarity theorem What is the missing statement in step 4? ∠ACE ≅ ∠BCD ∠EAB ≅ ∠DBC ∠EAC ≅ ∠EAC ∠CBD ≅ ∠DBC

Respuesta :

Answer:

The missing Statement is

4. ∠EAC ≅ ∠EAC                               4. reflexive property

Step-by-step explanation:

Given:

AEEC; BDDC

To Prove:

△AEC ~ △BDC

Proof:

In △AEC  and △BDC

Statement                                              Reason

1. AE⊥EC;BD⊥DC                                  1. given

2. ∠AEC is a rt. ∠; ∠BDC is a rt. ∠    2. definition of perpendicular

3. ∠AEC ≅ ∠BDC                              3. all right angles are congruent

4. ∠EAC ≅ ∠EAC                               4. reflexive property

5. △AEC ~ △BDC                               5. AA similarity theorem

Answer:

A. ∠ACE ≅ ∠BCD  

Step-by-step explanation:

ACCESS MORE