Refrigerant-134a enters a compressor as a saturated vapor at 160 kPa at a rate of 0.03 m3/s and leaves at 800 kPa. The power input to the compressor is 10 kW. If the surroundings at 20°C experience an entropy increase of 0.008 kW/K, determine (a) the rate of heat loss from the compressor, (b) the exit temperature of the refrigerant, and (c) the rate of entropy generation.

Respuesta :

Answer:

a) [tex] \dot Q_{out} = (20 + 273} \times 0.008 = 2.344 kW[/tex]

b) T_2 = 36.4 degree C

c) [tex]\Delta S_{gen} = 0.006512 KW/K[/tex]

Explanation:

Given data:

[tex]P_1 = 160 kPa[/tex]

volumetric flow [tex]V_1 = 0.03 m^3/s[/tex]

[tex]P_2 = 800 kPa[/tex]

power input [tex]W_{in} = 10 kW[/tex]

[tex]T_{surr} = 20 degree C[/tex]

entropy = 0.008 kW/K

from refrigerant table for P_1 = 160 kPa and x_1 = 1.0

[tex] v_1 = 0.12355 m^3/kg[/tex]

[tex]h_1 = 241.14 kJ/kg[/tex]

[tex]s_1 = 0.94202 kJ/kg K[/tex]

a) mass flow rate [tex] \dot m = \frac{V_1}{v_1}[/tex]

[tex]\dot m = \frac{0.03}{0.12355} = 0.2428 kg/s[/tex]

heat loss[tex] = T_{surr} \times entropy[/tex]

heat loss[tex] \dot Q_{out} = (20 + 273} \times 0.008 = 2.344 kW[/tex]

b) from energy balance equation

[tex]W_{in} 0 \dot Q_{out} = \dot m (h_2 -h_1}[/tex]

[tex]10 - 2.344 = 0.2428 (h_2 - 241.14}[/tex]

[tex]h_2 = 272.67 kJ/kg[/tex]

from refrigerant table, for P_2 = 800 kPa and h_2 = 272.67 kJ/kg

T_2 = 36.4 degree C

c) from refrigerant table P_2 = 800 kPa and h_2 = 272.67 kJ /kg

[tex]s_2 = 0.93589 kJ/kg K[/tex]

rate of entropy

[tex]\Delta S_R =  \dot m =(s_2 -s_1)[/tex]

[tex]\Delta S_R = 0.2428 \times (0.93589 -0.94202) = - 0.0014884 kW/K[/tex]

rate of entropy for entire process

[tex]\Delta S_{gen} = \Delta _S_R + \Delta_{surr}[/tex]

[tex]\Delta S_{gen} = 0.0014884 + 0.008 = 0.006512 KW/K[/tex]

RELAXING NOICE
Relax