Respuesta :
Answer:
The volume of the balloon will be 5.11L
Explanation:
An excersise to solve with the Ideal Gases Law
First of all, let's convert the pressure in mmHg to atm
1 atm = 760 mmHg
760 mmHg ___ 1 atm
755.4 mmHg ____ (755.4 / 760) = 0.993 atm
922.3 mmHg ____ ( 922.3 / 760) = 1.214 atm
T° in K = 273 + °C
28.5 °C +273 = 301.5K
26.35°C + 273= 299.35K
P . V = n . R .T
First situation: 0.993atm . 6.25L = n . 0.082 . 301.5K
(0.993atm . 6.25L) / 0.082 . 301.5 = n
0.251 moles = n
Second situation:
1.214 atm . V = 0.251 moles . 0.082 . 301.5K
V = (0.251 moles . 0.082 . 301.5K) / 1.214 atm
V = 5.11L
Answer: The volume of the balloon if it were submerged in a swimming pool to a depth where the pressure is 922.3 mmHg and the temperature is 26.35°C is 5.08 L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 755.4 mmHg
[tex]P_2[/tex] = final pressure of gas = 922.3 mmHg
[tex]V_1[/tex] = initial volume of gas = 6.25 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]28.50^oC=273+28.50=301.50K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]26.35^oC=273+26.35=299.35K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{755.4 \times 6.25}{301.50K}=\frac{922.3\times V_2}{299.35K}[/tex]
[tex]V_2=5.08L[/tex]