Respuesta :

Answer:

The zeros of given expression [tex] -x^3-3x^2=6x+4[/tex] is -1, [tex]-1+i\sqrt{3}[/tex] and [tex]-1-i\sqrt{3}[/tex]

Step-by-step explanation:

Given expresssion is [tex]-x^3-3x^2=6x+4[/tex]

To find zeros of given expression we have to equate the expression to zero.

ie., [tex]-x^3-3^2-6x-4=0[/tex]

[tex]-(x^3+3x^2+6x+4)=0[/tex]

[tex]x^3+3x^2+6x+4=0[/tex]

By using synthetic division

-1  |  1    3    6    4

    |  0   -1   -2   -4

    |________________

       1    2   4    0

Therefore (x+1) is a  zero

Now the quadratic equation is [tex]x^2+2x+4=0[/tex]

For quadratic equation [tex]ax^2+bx+c=0[/tex]  we have

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Here a=1 ,b=2 and c=4 now substitute the values

[tex]x=\frac{-2\pm \sqrt{2^2-4(1)(4)}}{2(1)}[/tex]

[tex]x=\frac{-2\pm \sqrt{4-16}}{2}[/tex]

[tex]x=\frac{-2\pm \sqrt{-12}}{2}[/tex]

[tex]x=\frac{-2\pm \sqrt{12i^2}}{2}[/tex] where [tex]i^2=-1[/tex]

[tex]x=\frac{-2\pm i \sqrt{4\times 3}}{2}[/tex]

[tex]x=\frac{-2\pm i \sqrt{4}\sqrt{3}}{2}[/tex]

[tex]x=\frac{-2\pm 2i\sqrt{3}}{2}[/tex]

[tex]x=2\times\frac{(-1\pm i\sqrt{3})}{2}[/tex]

[tex]x=-1\pm i\sqrt{3}[/tex]

Therefore [tex]x=-1+i\sqrt{3}[/tex]  and [tex]x=-1-i\sqrt{3}[/tex]

Therefore the zeros are -1, [tex]-1+i\sqrt{3}[/tex] and [tex]-1-i\sqrt{3}[/tex]

ACCESS MORE