Respuesta :
Answer:
Weight of the bag of grapefruit = [tex]3\frac{11}{16}[/tex] pounds
Step-by-step explanation:
Given :
Total weight of fruits purchased by Lynne = [tex]7\frac{1}{2}[/tex] pounds
Weight of apples purchased = [tex]1\frac{5}{8}[/tex] pounds
Weight of bananas =[tex]2\frac{3}{16}[/tex] pounds
To find the wight of the bag of grapefruit bought.
Solution:
Weight of the bag of grapefruit can be calculated by subtracting the weights of apples and bananas combined from the total weight.
Weight of apples and bananas combined = [tex](1\frac{5}{8}+2\frac{3}{16})[/tex] pounds
Weight of the bag of grapefruit bought can be calculated as :
⇒ [tex]7\frac{1}{2}-(1\frac{5}{8}+2\frac{3}{16})[/tex]
Simplifying by removing parenthesis by reversing the sign after the negative.
⇒ [tex]7\frac{1}{2}-1\frac{5}{8}-2\frac{3}{16}[/tex]
Evaluating the whole numbers and fraction separately.
⇒ [tex](7-1-2)+(\frac{1}{2}-\frac{5}{8}-\frac{3}{16})[/tex]
⇒ [tex](4)+(\frac{1}{2}-\frac{5}{8}-\frac{3}{16})[/tex]
Taking LCD for 2,8,16 which is = 16 as its the least common multiple.
Making the denominators common.
⇒ [tex](4)+(\frac{1\times 8}{2\times 8}-\frac{5\times 2}{8\times 2}-\frac{3\times 1}{16\times 1})[/tex]
⇒ [tex](4)+(\frac{8}{16}-\frac{10}{16}-\frac{3}{16})[/tex]
Combining the numerators.
⇒ [tex](4)+(\frac{8-10-3}{16})[/tex]
⇒ [tex](4)+(\frac{-5}{16})[/tex]
Making whole number to fraction to evaluate.
⇒ [tex]\frac{4}{1}-\frac{5}{16}[/tex]
Taking LCD = 16
⇒ [tex]\frac{4\times 16}{1\times 16}-\frac{5}{16}[/tex]
⇒ [tex]\frac{64}{16}-\frac{5}{16}[/tex]
Combining the numerators.
⇒ [tex]\frac{64-5}{16}[/tex]
⇒ [tex]\frac{59}{16}[/tex]
Converting to mixed number.
⇒ [tex]3\frac{11}{16}[/tex] pounds (Answer)
Weight of the bag of grapefruit = [tex]3\frac{11}{16}[/tex] pounds