Respuesta :
Answer:
a) [tex]T=1.02 s[/tex]
b) [tex]v=0.28\frac{m}{s}[/tex]
c) [tex]v=0.25\frac{m}{s}[/tex]
Explanation:
a) The period is defined as:
[tex]T=\frac{2\pi}{\omega}[/tex]
[tex]\omega[/tex] is the natural frequency of the system, in this case is given by:
[tex]\omega=\sqrt{\frac{k}{m}}\\\omega=\sqrt{\frac{9.5\frac{N}{m}}{250*10^{-3}kg}}\\\omega=6.16\frac{rad}{s}[/tex]
Now, we calculate the period:
[tex]T=\frac{2\pi}{6.16\frac{rad}{s}}\\T=1.02 s[/tex]
b) According to the law of conservation of energy, we have:
[tex]\frac{kx^2}{2}=\frac{mv^2}{2}\\v=\sqrt{\frac{kx^2}{m}}\\v=\sqrt{\frac{(9.5\frac{N}{m})(4.5*10^{-2}m)^2}{250*10^{-3}kg}}\\v=0.28\frac{m}{s}[/tex]
c) In this case, we have:
[tex]U_i=U_f+K_f\\\frac{kx_i^2}{2}=\frac{kx_f^2}{2}+\frac{mv^2}{2}\\v=\sqrt{\frac{k(x_i^2-x_f^2)}{m}}\\v=\sqrt{\frac{9.5\frac{N}{m}((4.5*10^{-2}m)^2-(2*10^{-2}m)^2)}{250*10^{-3}kg}}\\v=0.25\frac{m}{s}[/tex]
The maximum speed is; 0.28 m/s
The speed when it is located 2.0 cm from its equilibrium position is; 0.25 m/s
What is the speed from the equilibrium position?
A) Formula for period is;
T = √(2π/ω)
where ω which is the natural angular frequency
ω = √(k/m)
we are given;
k = 9.5 N/m
m = 250 g = 0.25 kg
x = 4.5 cm = 0.045 m
Thus;
ω = √(9.5/0.25)
ω = 6.1 rad/s
Thus;
Period is; T = √(2π/6.1)
T = 1.02 s
B) From law of conservation of energy;
maximum speed is;
v = √(kx²/m)
v = √(9.5 * 0.045²/0.25)
v = 0.28 m/s
C) We are now given;
x₁ = 4.5cm = 0.045 m
x₂ = 2 cm = 0.02 m
Thus, speed is gotten from;
v = √((k(x₁ - x₂)/m)
v = √((9.5(0.045 - 0.02)/0.25)
v = 0.25 m/s
Read more about speed at; https://brainly.com/question/26114128