Two cylinders with the same mass density rhoC = 713 kg / m3 are floating in a container of water (with mass density rhoW = 1025 kg / m3). Cylinder #1 has a length of L1 = 20 cm and radius r1 = 5 cm. Cylinder #2 has a length of L2 = 10 cm and radius r2 = 10 cm. If h1 and h2 are the heights that these cylinders stick out above the water, what is the ratio of the height of Cylinder #2 above the water to the height of Cylinder #1 above the water (h2 / h1)? h2 / h1 =

Respuesta :

Answer:

Explanation:

Given

density of cylinder is [tex]\rho _c=713 kg/m^3[/tex]

Length of first cylinder is [tex]L_1=20 cm[/tex]

radius [tex]r_1=5 cm[/tex]

For cylinder 2 [tex]L_2=10 cm [/tex]

[tex]r_2=10 cm[/tex]

[tex]h_1[/tex] and [tex]h_2[/tex] are the height above water

E

as object is floating so its weight must be balanced with buoyant force

[tex]\rho _c\frac{\pi }{4}d_1^2L_1g=\rho _w\frac{\pi }{4}d_1^2(L_1-h_1)g----1[/tex]

For 2nd cylinder

[tex]\rho _c\frac{\pi }{4}d_2^2L_2g=\rho _w\frac{\pi }{4}d_2^2(L_2-h_2)g----2[/tex]

Dividing 1 and 2 we get

[tex]\frac{L_1}{L_2}=\frac{L_1-h_1}{L_2-h_2}[/tex]

[tex]\frac{20}{10}=\frac{20-h_1}{10-h_2}[/tex]

[tex]2h_2=h_1[/tex]

[tex]\\\Rightarrow\frac{h_2}{h_1}=\frac{1}{2}[/tex]                            

ACCESS MORE