Answer:
Explanation:
Given
density of cylinder is [tex]\rho _c=713 kg/m^3[/tex]
Length of first cylinder is [tex]L_1=20 cm[/tex]
radius [tex]r_1=5 cm[/tex]
For cylinder 2 [tex]L_2=10 cm [/tex]
[tex]r_2=10 cm[/tex]
[tex]h_1[/tex] and [tex]h_2[/tex] are the height above water
E
as object is floating so its weight must be balanced with buoyant force
[tex]\rho _c\frac{\pi }{4}d_1^2L_1g=\rho _w\frac{\pi }{4}d_1^2(L_1-h_1)g----1[/tex]
For 2nd cylinder
[tex]\rho _c\frac{\pi }{4}d_2^2L_2g=\rho _w\frac{\pi }{4}d_2^2(L_2-h_2)g----2[/tex]
Dividing 1 and 2 we get
[tex]\frac{L_1}{L_2}=\frac{L_1-h_1}{L_2-h_2}[/tex]
[tex]\frac{20}{10}=\frac{20-h_1}{10-h_2}[/tex]
[tex]2h_2=h_1[/tex]
[tex]\\\Rightarrow\frac{h_2}{h_1}=\frac{1}{2}[/tex]