Respuesta :

Answer:

[tex](2x+5)(4x^{2} -10x+25)=0[/tex]

Step-by-step explanation:

Given:

The given equation is.

[tex]8x^{3} +125=0[/tex]

Find the some of cube.

Solution:

[tex]8x^{3} +125=0[/tex]

[tex]2^{3}x^{3} +5^{3}=0[/tex]

[tex](2x)^{3} +5^{3}=0[/tex]----------(1)

The sum of the cube formula is given below.

[tex](a^{3} +b^{3})=(a+b)(a^{2} -ab+b^{2} )[/tex]-----------(2)

By comparing equation 1 and equation 2

[tex]a=2x, b=5[/tex]

substitute a and b value in equation 2

[tex]((2x)^{3} +5^{3})=(2x+5)((2x)^{2} -(2x)(5)+5^{2})[/tex]

[tex]((2x)^{3} +5^{3})=(2x+5)(4x^{2} -(10x)+25)[/tex]

[tex]((2x)^{3} +5^{3})=(2x+5)(4x^{2} -10x+25)[/tex]

Therefore the sum of the cube [tex](2x+5)(4x^{2} -10x+25)=0[/tex]

ACCESS MORE