Respuesta :

Answer:

Part A) [tex]sin(\alpha)=\frac{4}{7},\ cos(\beta)=\frac{4}{7}[/tex]

Part B) [tex]tan(\alpha)=\frac{4}{\sqrt{33}},\ tan(\beta)=\frac{4}{\sqrt{33}}[/tex]

Part C) [tex]sec(\alpha)=\frac{7}{\sqrt{33}},\ csc(\beta)=\frac{7}{\sqrt{33}}[/tex]

Step-by-step explanation:

Part A) Find [tex]sin(\alpha)\ and\ cos(\beta)[/tex]

we know that

If two angles are complementary, then the value of sine of one angle is equal to the cosine of the other angle

In this problem

[tex]\alpha+\beta=90^o[/tex] ---> by complementary angles

so

[tex]sin(\alpha)=cos(\beta)[/tex]

Find the value of [tex]sin(\alpha)[/tex] in the right triangle of the figure

[tex]sin(\alpha)=\frac{8}{14}[/tex] ---> opposite side divided by the hypotenuse

simplify

[tex]sin(\alpha)=\frac{4}{7}[/tex]

therefore

[tex]sin(\alpha)=\frac{4}{7}[/tex]

[tex]cos(\beta)=\frac{4}{7}[/tex]

Part B) Find [tex]tan(\alpha)\ and\ cot(\beta)[/tex]

we know that

If two angles are complementary, then the value of tangent of one angle is equal to the cotangent of the other angle

In this problem

[tex]\alpha+\beta=90^o[/tex] ---> by complementary angles

so

[tex]tan(\alpha)=cot(\beta)[/tex]

Find the value of the length side adjacent to the angle alpha

Applying the Pythagorean Theorem

Let

x ----> length side adjacent to angle alpha

[tex]14^2=x^2+8^2\\x^2=14^2-8^2\\x^2=132[/tex]

[tex]x=\sqrt{132}\ units[/tex]

simplify

[tex]x=2\sqrt{33}\ units[/tex]

Find the value of [tex]tan(\alpha)[/tex] in the right triangle of the figure

[tex]tan(\alpha)=\frac{8}{2\sqrt{33}}[/tex] ---> opposite side divided by the adjacent side angle alpha

simplify

[tex]tan(\alpha)=\frac{4}{\sqrt{33}}[/tex]

therefore

[tex]tan(\alpha)=\frac{4}{\sqrt{33}}[/tex]

[tex]tan(\beta)=\frac{4}{\sqrt{33}}[/tex]

Part C) Find [tex]sec(\alpha)\ and\ csc(\beta)[/tex]

we know that

If two angles are complementary, then the value of secant of one angle is equal to the cosecant of the other angle

In this problem

[tex]\alpha+\beta=90^o[/tex] ---> by complementary angles

so

[tex]sec(\alpha)=csc(\beta)[/tex]

Find the value of [tex]sec(\alpha)[/tex] in the right triangle of the figure

[tex]sec(\alpha)=\frac{1}{cos(\alpha)}[/tex]

Find the value of [tex]cos(\alpha)[/tex]

[tex]cos(\alpha)=\frac{2\sqrt{33}}{14}[/tex] ---> adjacent side divided by the hypotenuse

simplify

[tex]cos(\alpha)=\frac{\sqrt{33}}{7}[/tex]

therefore

[tex]sec(\alpha)=\frac{7}{\sqrt{33}}[/tex]

[tex]csc(\beta)=\frac{7}{\sqrt{33}}[/tex]

ACCESS MORE