Respuesta :
Answer:
[tex]2.44156\times 10^{13}\ m^3[/tex]
29010.53917 m
Explanation:
[tex]\rho[/tex] = Density of asteroid = 2 g/cm³
V = Volume
d = Diameter = 10 km
r = Radius = [tex]\dfrac{d}{2}=\dfrac{10}{2}=5\ km[/tex]
v = Velocity = 11 km/s
[tex]H_v[/tex] = Heat vaporization of water = [tex]2.26\times 10^6\ J/kg[/tex]
[tex]\Delta T[/tex] = Change in temperature = 100-20
Mass is given by
[tex]m=\rho V\\\Rightarrow m=\rho\dfrac{4}{3}\pi r^3\\\Rightarrow m=2000\dfrac{4}{3}\times \pi\times 5000^3\\\Rightarrow m=1.0472\times 10^{15}\ kg[/tex]
The kinetic energy is
[tex]K=\dfrac{1}{2}mv^2\\\Rightarrow K=\dfrac{1}{2}1.0472\times 10^{15}\times 11000^2\\\Rightarrow K=6.33556\times 10^{22}\ J[/tex]
Heat is given by
[tex]Q=mc\Delta T+mH_v\\\Rightarrow 6.33556\times 10^{22}=m\times (4186\times (100-20)+2.26\times 10^6)\\\Rightarrow m=\dfrac{ 6.33556\times 10^{22}}{4186\times (100-20)+2.26\times 10^6}\\\Rightarrow m=2.44156\times 10^{16}\ kg[/tex]
Mass of water is [tex]2.44156\times 10^{16}\ kg[/tex]
Volume is [tex]\dfrac{2.44156\times 10^{16}}{10^3}=2.44156\times 10^{13}\ m^3[/tex]
Amount of water is [tex]2.44156\times 10^{13}\ m^3[/tex]
If it were a cube
[tex]h=V^{\dfrac{1}{3}}\\\Rightarrow h=(2.44156\times 10^{13})^{\dfrac{1}{3}}\\\Rightarrow h=29010.53917\ m[/tex]
The height of the water would be 29010.53917 m