Answer:
Part 1 : [tex]I_A = 5.77 e^{0.01055t}[/tex]
Part 2 : In 2069 the population would be 12 millions.
Step-by-step explanation:
Part 1 : Given function that shows the population( in millions ) of Israel after t years since 2000,
[tex]I_A = A_0 e^{kt}[/tex]
If t = 0,
[tex]I_A = 5.77[/tex]
[tex]\implies 5.77 = A_0 e^{0}\implies A_0 = 5.77[/tex]
If t = 77 years,
The population in 2077,
[tex]I_A = A_0 e^{77k}=5.77 e^{77k}[/tex]
According to the question,
Population in 2077 = 13 millions
[tex]13 = 5.77 e^{77k}[/tex]
[tex]\frac{13}{5.77} = e^{77k}[/tex]
Taking ln both sides,
[tex]\ln(\frac{13}{5.77}) = \ln(e^{77k})[/tex]
[tex]\ln(\frac{13}{5.77}) = 77k[/tex]
[tex]\implies k = 0.010549\approx 0.01055[/tex]
Hence, the required function would be,
[tex]I_A = 5.77 e^{0.01055t}[/tex]
Part 2 : If [tex]I_A = 12[/tex]
[tex]12 = 5.77 e^{0.01055t}[/tex]
[tex]\frac{12}{5.77} = e^{0.01055t}[/tex]
Taking ln both sides,
[tex]\ln(\frac{12}{5.77}) = \ln(e^{0.01055t})[/tex]
[tex]\ln(\frac{12}{5.77}) =0.01055t[/tex]
[tex]\implies t\approx 69[/tex]
∵ 2000 + 69 = 2069
Hence, in 2069 the population would be 12 millions.