Answer:
a) ∣∣∂(x,y)/∂(u,v)∣∣ = 28
b)Area = 197.12
Step-by-step explanation:
a) Find the absolute value of the determinant of the Jacobian
Change of coordinates
x = 4v -2u-3
[tex]\frac{dx}{du} = -2[/tex]
[tex]\frac{dx}{dv} = 4[/tex]
y = -1+5u+4v
[tex]\frac{dy}{du} = 5[/tex]
[tex]\frac{dy}{dv} = 4[/tex]
Then
∣∣∂(x,y)/∂(u,v)∣∣=∣det | =| [tex]\[ \begin{array}{cc}-2 & 4 \\ 5 & 4\end{array} \][/tex]|
∣∣∂(x,y)/∂(u,v)∣∣ = ∣(-2)(4)-(5)(4)∣ = 28
b) The area of the region in the xy -plane is the area of the region in the uv-plane multiplies by the absolute value of the determinant of the Jacobian.
Thus
Area = (7.04)(28)
Area = 197.12