Answer:
∆Ssys = 392.73-179.62 =213.11 J/K.
Explanation:
m_1=145,T_1=20°C
and
m_2=235, T_2=84 °C
let, specific heat capacity be c(small)=2.42 J/g/K
let,
the constant temperature obtained after mixing is t
so heat absorbed(1st portion of ethanol),[tex]Q_1=m_1c(T-T_1)[/tex]
heat heat lost(2nd portion of ethanol), ,[tex]Q_2=m_2c(T_2-T)[/tex]
Now, heat lost= heat gained
,[tex]m_1c(T-T_1)[/tex]= [tex]m_2c(T_2-T)[/tex]
[tex]145(T-20)[/tex]= [tex]235(84-T)[/tex]
T=61.25°C
[tex]\Delta S_1= cm_1ln(\frac{T}{T_1} )[/tex]
putting values we get
[tex]\Delta S_1= 2.42\times145ln(\frac{61.25}{20} )[/tex]
ΔS_1= 392.73 J/ K.
and
[tex]\Delta S_2= 2.42\times235ln(\frac{61.25}{84} )[/tex]
ΔS_2= -179.62557 J/K.
∆Ssys = 392.73-179.62 =213.11 J/K.