Answer:
The firm's sample size must be of at least 171 adults.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]
Now, find the margin of error M as such
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the length of the sample.
In this problem, we have that:
[tex]M = 60, \sigma = 400[/tex]. So
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
[tex]60 = 1.96*\frac{400}{\sqrt{n}}[/tex]
[tex]60\sqrt{n} = 784[/tex]
[tex]\sqrt{n} = 13.07[/tex]
[tex]n = 170.7[/tex]
The firm's sample size must be of at least 171 adults.