Answer:
The percentage by mass of sodium in the alloy is 33.29%.
Explanation:
Volume of hydrogen gas = [tex]V = 2.6 ft^3=73.6237 L[/tex]
[tex]1 ft^3=28.3168 L[/tex]
Pressure of hydrogen gas = P = 1 atm
Temperature of the gas = T = 0.0°C =273.15 K
Moles of hydrogen gas = n
[tex]PV=nRT[/tex] (Ideal gas)
[tex]n=\frac{PV}{RT}=\frac{1atm \times 73.6237 L}{0.0821 atm L/mol K\times 273.15 K}[/tex]
n = 3.2830 mole
Moles of hydrogen gas = 3.280 mole
[tex]2 Na(s) +2H_2O(l)\rightarrow 2NaOH(aq)+ H_2 (g)[/tex]
According to reaction 1 mole of hydrogen is obtained from 2 moles of sodium.
Then 3.280 moles of hydrogen gas will be obtained from :
[tex]\frac{2}{1}\times 3.280 mol=6.566 mol[/tex]
Mass of 6.566 moles of sodium =
6.566 mol × 23 g/mol = 151.02 g
Mass of hydrone = 1.0 lb = 453.592 g
The percentage by mass of sodium in the alloy:
[tex]\frac{151.02 g}{ 453.592 g}\times 100=33.29\%[/tex]