Answer:
I = 0.0674 kg.m²
Explanation:
given,
mass = 13.5 Kg
torsion constant = k = 0.618 N.m
number of cycle = 28
time = 58.1 s
Time of one cycle
[tex]T = \dfrac{58.1}{28}[/tex]
[tex]T =2.075\ s[/tex]
we know,
[tex]T = 2\pi\sqrt{\dfrac{I}{k}}[/tex]
[tex]I = k (\dfrac{T}{2\pi})^2[/tex]
[tex]I =0.618\times \dfrac{T^2}{4\pi^2}[/tex]
[tex]I =0.618\times \dfrac{2.075^2}{4\pi^2}[/tex]
I = 0.0674 kg.m²
the rotational inertia of the object is equal to I = 0.0674 kg.m²