Answer:
94% Confidence interval: (0.3771 ,0.5365)
Step-by-step explanation:
We are given the following data set:
0.481, 0.439,0.448,0.446,0.618, 0.411, 0.250, 0.604, 0.414
a) True mean of these distance estimates by d
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{4.111}{9} = 0.4568[/tex]
b)
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
Sum of squares of differences = 0.0954
[tex]S.D = \sqrt{\frac{0.0954}{8}} = 0.1092[/tex]
94% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 8 and}~\alpha_{0.06} = \pm 2.1891[/tex]
[tex]0.4568 \pm 2.1891(\frac{0.1092}{\sqrt{9}} ) = 0.4568 \pm 0.0797 = (0.3771 ,0.5365)[/tex]