Answer: c. 3.01
Step-by-step explanation:
The test statistic for difference between two population mean (when population standard deviation is known) is given by :
[tex]z=\dfrac{\overline{x}_1-\overline{x}_2}{\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}}[/tex]
, where [tex]n_1[/tex] = Size of first sample
[tex]n_2[/tex] = Size of second sample
[tex]\overline{x}_1-\overline{x}_2[/tex] = Difference between two sample mean.
[tex]\sigma_1[/tex] = standard deviation for population 1.
[tex]\sigma_2[/tex] = standard deviation for population 2.
As per given , we have
[tex]n_1=80[/tex]
[tex]n_2=60[/tex]
[tex]\overline{x}_1=\$6.75[/tex]
[tex]\overline{x}_2=\$6.25[/tex]
[tex]\sigma_1=\$1[/tex]
[tex]\sigma_2=\$0.95[/tex]
Substitute these values in formula , we get
[tex]z=\dfrac{6.75-6.25}{\sqrt{\dfrac{(1)^2}{80}+\dfrac{(0.95)^2}{60}}}[/tex]
[tex]z=\dfrac{0.50}{\sqrt{0.0275416666667}}[/tex]
[tex]z=\dfrac{0.50}{0.165956821694}[/tex]
[tex]z=3.0128318613\approx3.01[/tex]
Hence, the value of the test statistic is 3.01.
Hence, the correct option is c. 3.01 .